MECH 230 Dynamics Homework 6

Dr. Theresa Honein

Due Wednesday October 23, 2024

1. Read the problem statement of MKB 4/023.

4/23 The small car, which has a mass of 20 kg, rolls freely on the horizontal track and carries the 5-kg sphere mounted on the light rotating rod with r = 0.4 m. A geared motor drive maintains a constant angular speed $\dot{\theta} = 4$ rad/s of the rod. If the car has a velocity v = 0.6 m/s when $\theta = 0$, calculate v when $\theta = 60^{\circ}$. Neglect the mass of the wheels and any friction.

2. Let \mathbf{E}_x point parallel to the rails, \mathbf{E}_z point vertically upwards, and \mathbf{E}_y complete the right handed triad. Here, O is not a fixed point, so it cannot be our origin. Name the car body 1 and the sphere body 2, and take the fixed origin A to be such that

$$\mathbf{r}_1 = x \mathbf{E}_x,$$

$$\mathbf{r}_1 = \mathbf{r}_1 + r \mathbf{e}_r$$

- 3. Calculate \mathbf{v}_1 , \mathbf{a}_1 , \mathbf{v}_2 and \mathbf{a}_2 .
- 4. Draw the free body diagram of the combined system of the car and the sphere.

Compiled on 10/16/2024 at 4:45pm

- 5. Show that the linear momentum of the system along \mathbf{E}_x is conserved. Use this information to solve for $\dot{x}(t)$.
- 6. Consider the system of the ball alone and solve for the tension in the rod as a function of time.
- 7. Calculate the power of this tension force. This is the power supplied by the motor at O.
- 8. Find an expression for the total kinetic energy of the system. (Please do not replace values for the angular velocities of the masses. Use the symbols $m_1 = 20$ kg and $m_2 = 5$ kg.
- 9. Calculate the angular momentum of the system about the fixed origin A.