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1 The Balance Laws for a rigid body

The balance laws for a rigid body are Euler’s first law, also known as the Balance of Linear
Momentum,

F = ma, (1)

and Euler’s second law, also known as the Balance of Angular Momentum which has three
equivalent forms:

M? = H? about a fixed point O, (2)
MC = H® about the center of mass C, (3)
M?” = H” + (vp —ve) x G =HY 4 (r¢ — rp) X mag  about any material point P on the body.

(4)

where O is a fixed point. Here, the BoAM is an independent postulate, not derivable from the
BoLM.

1.1 Resultant forces and resultant moments
The resultant force F acting on the rigid body is the sum of all forces acting on the rigid body.

The resultant moment relative to a fixed point O, M is the resultant external moment relative
to O of all of the moments acting on the rigid body. These moments may be decomposed into
two additive parts: the moment due to the individual external forces acting on the rigid body
and applied external moments that are not due to external forces.

Consider a system of forces and moments acting on rigid body. A set of K forces F;, (i =
1,..., K) act on the rigid body. The force F; acts at the material points X}, that has a position
vector x;. In addition, a moment M., that is not due to the moment of an applied forces, acts
on the rigid body.
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For this system of applied forces and moments, the resultants are
K
F=)F,
i=1
K
M? =M, + > 1; xF, (5)
i=1

K
M =M, + > (ri—r,) x F;.
=1

Examples of pure moments:
1. reaction moments My at joints.

2. moments —Kr7(0 — 6y)E, supplied by torsional springs.

1.1.1 Does the weight give a moment about the center of mass?

We calculate the total weight force of the body by continuously summing (integrating) the
weights of the differential masses dm

W:/gdm:g/dm:mg7 (6)
B B

ad we sum the moments of these differential forces about the center of mass

MC:/Bﬂ'xgdm:(/Bﬂ'dm)xgzo (7)

1.2 Equivalence of the BoAM forms

since fB wdm = 0.

The following developments are true for rigid bodies where the inertia matrix components are
constant.
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1.3 BoAM about any point P
Starting with the BoAM about the center of mass

M = H, (8)
we replace MY = MY + (r¢ —rp) x F to get
M = HE + (r¢ —rp) x F. (9)

thus recovering equation 4,. To recover equation 4, recall H® = H” + (rp —r¢) X G and
calculate

HC :HP+(VP—V0> X G+(rp—rc) X mac, (10)
and replace it in equation 9 to obtain

MP:HP—I—(VP—VC)><G+(rp—rc)xmao+(rc—rp)><F,

:HP+(VP—V0> x G. <11)

1.3.1 BoAM about the a fixed point O

If P is a fixed point O, then vp = 0 and equation 11 simplifies to
M° = H?

thus recovering equation M.

1.4 Calculating H

Recall
HY = (Lyw, + Lywy + Law.)e, + (Lyw, + Lyw, + L.w.)e, + (Law, + 1.0, + 1.w.)e..
(12)
where
W = Wye,; + wye, +w.e,. (13)
We need to calculate HE
HC = H® 4 w x HC. (14)

where H¢ is the corotational rate of H, that is the time derivative of H that is obtained while
keeping e, e,, and e, fixed:

HY = (Latop + Ly + Lt.)e, + (Lytop + Ly, + 1.0, ey, + (Lt + 1.0, + 1.0))e..
(15)

Useful identity:

(axb)-E,=(E, xa)-b. (16)
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1.5 The fixed axis rotation case

In this case, it is usually more convenient to calculate the BoAM about a fixed point O. Here,

we can define

e, = cos()E, +sin(0)E,,
e, = cos(§)E, — sin(f)e,,

€, = Ez7
e, = be,,
e, = —fOe,,
w=0E, = wE,

HC = IQwe, + I we, + IQWE.,

z

HC = (IQw — IS w?)e, + (I0w + ISw?)e, + IWE. .

The balance laws for the fixed axis of rotation case can be written as

F =mv,,

0] O - 0] O - O O -
M = (I9.w — IJw?)e, + (17w + I9.w?)e, + ISWE, .

1.6 General Plane Motion

For general plane motion, we still have

e, = cos()E, +sin(0)E,,
e, = cos(d)E, — sin(0)e,,

€, = Eza
e, = be,,
e, = —be,,
w=0E, =wE,.

Calculating the balance of angular momentum about the center of mass, we have

HY = I%we, + [ycwey + ISWE.,

z

1C c. _ C c. , 7C c
H = (ICw — ITw?)e, + (1w + IS w?)e, + [LWE..

Then, the balance laws become

F =mv,,

M€ = (IS — ICw?)e, + (1w + ISw)e, + ICWE..
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About any point P, we have
H” = 1] we, + I, we, + I wE.,
H” = (156 — I we, + (ILw + I w)e, + ILWE.,.
then, the balance laws become
F =mv,,
M€ = (IL0 — I w?)e, + (Inw + I w’)e, + ILWE, + (vp — ve) X G,

= (IS0 — ISw?)e, + (Iw + IS.w?)e, + ISWE, + (re — rp) X mac.

2 Work-Energy Theorem and Energy Conservation

Here, we first show the Koenig decomposition for the kinetic energy of a rigid body:

1 1
T:§mvc-vo+§H-w.

This is then followed by a development of the work-energy theorem for a rigid body:

dT =
E:F-VC+M-w:;Fi-Vi+Me-w.

(36)

(37)

As in particles and systems of particles, this theorem can be used to establish conservation of

the total energy of a rigid body during a motion.

2.1 Koenig’s Decomposition

By definition, the kinetic energy T" of a rigid body is

1
T——/V-vpdv.
2 Jr

where

V=Vo+wXT,

T=Tr —TIcC,

W = Wye, + wyey, + w,e,.
Substituting

1
T:5/(vc~vc+2vc-(w><7r)+(w><7r)-(w><7r))dm
B

However,

1/ d VC'Vc/d 1
- Vo rvodm = m = —-Mmvg - V¢.
2 5 c C 9 9 C C

/Bvc.(wxw)dm:vc.(wx/wdm>:o.
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Thus,

1 1
T:§mvc-vc+§/(w><7r)-(w><7r)dm (43)
B
we can simplify
(wxm) (wxm)=(7 7w — (7 w) w). (44)
Recall that
HC = / 7 X (wx m)dm = /((ﬂ' cmw — (7 w)m)dm. (45)
B B
Hence, we obtain the Koenig decomposition:
1 1
T= 5Mve Ve + §H Cw. (46)

2.2 The Work-Energy Theorem

.1 1 1. 1
T:imvc-Vc+§mVC-VC+§H~w+§H'w. (47)

We need to show that H-w = H - w.

o = w - %(wxex + Wyey + wzez) (48)
= W€, + Wyey + W€, + W,y + W€y + w,€, (49)
= Wye; + Wye, + w.e, + w X (wye; + wye, + w.e,) (50)
= Wy, +wye, + w.e,. (51)

Another direct calculation using this expression for a shows that
HY 0 = (Ippws + Loywy + L2w.)0p + (Loyws + Lywy + 10,0y + (Lpows + Lyawy + 1w,
(52)

Comparing this to the corresponding expression for HC - w, we find that they are equal. Con-
sequently,

.1 1 1. 1.
This result implies that
T=mve-voe+H- w. (54)

Invoking the balance of linear momentum and the balance of angular momentum, we obtain
the work-energy theorem:

T=F-vo+M-w. (55)

You should notice how this is a natural extension of the work-energy theorem for a single
particle.
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2.3 An alternative form of the work-energy theorem

Recall,

K
MY =M, + Z(rz —ro) X F;
i=1
[continue the 9.2.3.]

3 Integral Forms of the Balance Laws
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4 Summary

[Copied From OOR Primer Chapter 9]

For a system of K forces F;, (i =1,..., K) and a moment M., that is not due to the moment
of an applied force, acting on the rigid body, the resultant force F and moments are

K
F=)F,
=1

K
M? =M, + ) r; x F;, (58)
=1

K
MY =M, + Y (r; —rc) x F;,
=1

where M is the resultant moment relative to a fixed point O and M is the resultant moment
relative to the center of mass C' of the rigid body.

The relationship between forces and moments and the motion of the rigid body is postulated
using the balance laws. There are two equivalent sets of balance laws:

dVC

F=m—>=, and MO = HO. (59)
and
dve C _ C
F=m—— and M"Y =H". (60)
dt

When these balance laws are specialized to the case of a fixed-axis rotation, the expressions for
H and HY simplify. For instance,
F = mVC,

61
M = (1.0 — I.w?)e, + (I, + L.w)e, + I,.we,. (61)

In most problems, {E,, E,, E,} are chosen such that I, = I,, = 0.

To establish conservations of energy, two equivalent forms of the work-energy theorem were
developed. First, however, the Koenig decomposition for the kinetic energy of a rigid body was
established:
T L + 1H
= —mvg -V -H - w.
2 ¢y
This was then followed by a development of the work-energy theorem for a rigid body:
dT =

%:F'[V]c—l—M-w:gFi-vi—l—Me'w. (62)

To establish energy conservation results, this theorem is used in a similar manner to the one
employed with particles and systems of particles.

Four sets of applications were the discussed:
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1. Purely translational motion of a rigid body where w = o = 0.
2. A rigid body with a fixed point O.

3. Rolling rigid bodies and sliding rigid bodies.

4. Imbalanced rotors.

It is important to note that for the second set of applications, the balance law M = H© is
more convenient to use than M = H. The role of My in these problems is to ensure that the
axis of rotation remains E,. Finally, the four steps discussed are used as a guide to solving all
of the applications.
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