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1 The Balance Laws for a rigid body

The balance laws for a rigid body are Euler’s first law, also known as the Balance of Linear
Momentum,

F = ma, (1)

and Euler’s second law, also known as the Balance of Angular Momentum which has three
equivalent forms:

MO = ḢO about a fixed point O, (2)

MC = ḢC about the center of mass C, (3)

MP = ḢP + (vP − vC)×G = ḢC + (rC − rP )×maC about any material point P on the body.
(4)

where O is a fixed point. Here, the BoAM is an independent postulate, not derivable from the
BoLM.

1.1 Resultant forces and resultant moments

The resultant force F acting on the rigid body is the sum of all forces acting on the rigid body.

The resultant moment relative to a fixed point O, MO is the resultant external moment relative
to O of all of the moments acting on the rigid body. These moments may be decomposed into
two additive parts: the moment due to the individual external forces acting on the rigid body
and applied external moments that are not due to external forces.

Consider a system of forces and moments acting on rigid body. A set of K forces Fi, (i =
1, . . . , K) act on the rigid body. The force Fi acts at the material points Xi, that has a position
vector xi. In addition, a moment Me, that is not due to the moment of an applied forces, acts
on the rigid body.
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For this system of applied forces and moments, the resultants are

F =
K∑
i=1

Fi,

MO = Me +
K∑
i=1

ri × Fi,

MC = Me +
K∑
i=1

(ri − rc)× Fi.

(5)

Examples of pure moments:

1. reaction moments MR at joints.

2. moments −KT (θ − θ0)Ez supplied by torsional springs.

1.1.1 Does the weight give a moment about the center of mass?

We calculate the total weight force of the body by continuously summing (integrating) the
weights of the differential masses dm

W =

∫
B
gdm = g

∫
B
dm = mg, (6)

ad we sum the moments of these differential forces about the center of mass

MC =

∫
B
π × gdm =

(∫
B
πdm

)
× g = 0 (7)

since
∫
B πdm = 0.

1.2 Equivalence of the BoAM forms

The following developments are true for rigid bodies where the inertia matrix components are
constant.
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1.3 BoAM about any point P

Starting with the BoAM about the center of mass

MC = ḢC , (8)

we replace MP = MC + (rC − rP )× F to get

MP = ḢC + (rC − rP )× F. (9)

thus recovering equation 42. To recover equation 41, recall H
C = HP + (rP − rC) × G and

calculate

ḢC = ḢP + (vP − vC)×G+ (rP − rC)×maC , (10)

and replace it in equation 9 to obtain

MP = ḢP + (vP − vC)×G+ (rP − rC)×maC + (rC − rP )× F,

= ḢP + (vP − vC)×G.
(11)

1.3.1 BoAM about the a fixed point O

If P is a fixed point O, then vO = 0 and equation 11 simplifies to

MO = ḢO

thus recovering equation MO.

1.4 Calculating Ḣ

Recall

HC = (Ixxωx + Ixyωy + Ixzωz)ex + (Ixyωx + Iyyωy + Iyzωz)ey + (Ixzωx + Iyzωy + Izzωz)ez.
(12)

where

ω = ωxex + ωyey + ωzez. (13)

We need to calculate ḢC .

ḢC =
◦

HC + ω ×HC . (14)

where
◦

HC is the corotational rate of H, that is the time derivative of H that is obtained while
keeping ex, ey, and ez fixed:

HC = (Ixxω̇x + Ixyω̇y + Ixzω̇z)ex + (Ixyω̇x + Iyyω̇y + Iyzω̇z)ey + (Ixzω̇x + Iyzω̇y + Izzω̇z)ez.
(15)

Useful identity:

(a× b) · Ez = (Ez × a) · b. (16)
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1.5 The fixed axis rotation case

In this case, it is usually more convenient to calculate the BoAM about a fixed point O. Here,
we can define

ex = cos(θ)Ex + sin(θ)Ey,

ey = cos(θ)Ey − sin(θ)ex,

ez = Ez,

(17)

ėx = θ̇ey,

ėy = −θ̇ex,
(18)

ω = θ̇Ez = ωEz. (19)

HO = IOxzωex + IOyzωey + IOzzωEz, (20)

ḢO = (IOxzω̇ − IOyzω
2)ex + (IOyzω̇ + IOxzω

2)ey + IOzzω̇Ez. (21)

The balance laws for the fixed axis of rotation case can be written as

F = mv̇c, (22)

MO = (IOxzω̇ − IOyzω
2)ex + (IOyzω̇ + IOxzω

2)ey + IOzzω̇Ez. (23)

1.6 General Plane Motion

For general plane motion, we still have

ex = cos(θ)Ex + sin(θ)Ey,

ey = cos(θ)Ey − sin(θ)ex,

ez = Ez,

(24)

ėx = θ̇ey,

ėy = −θ̇ex,
(25)

ω = θ̇Ez = ωEz. (26)

Calculating the balance of angular momentum about the center of mass, we have

HC = ICxzωex + ICyzωey + ICzzωEz, (27)

ḢC = (ICxzω̇ − ICyzω
2)ex + (ICyzω̇ + ICxzω

2)ey + ICzzω̇Ez. (28)

Then, the balance laws become

F = mv̇c, (29)

MC = (ICxzω̇ − ICyzω
2)ex + (ICyzω̇ + ICxzω

2)ey + ICzzω̇Ez. (30)
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About any point P , we have

HP = IPxzωex + IPyzωey + IPzzωEz, (31)

ḢP = (IPxzω̇ − IPyzω
2)ex + (IPyzω̇ + IPxzω

2)ey + IPzzω̇Ez. (32)

then, the balance laws become

F = mv̇c, (33)

MC = (IPxzω̇ − IPyzω
2)ex + (IPyzω̇ + IPxzω

2)ey + IPzzω̇Ez + (vP − vC)×G, (34)

= (ICxzω̇ − ICyzω
2)ex + (ICyzω̇ + ICxzω

2)ey + ICzzω̇Ez + (rC − rP )×maC . (35)

2 Work-Energy Theorem and Energy Conservation

Here, we first show the Koenig decomposition for the kinetic energy of a rigid body:

T =
1

2
mvC · vC +

1

2
H · ω. (36)

This is then followed by a development of the work-energy theorem for a rigid body:

dT

dt
= F · vC +M · ω =

K∑
i=1

Fi · vi +Me · ω. (37)

As in particles and systems of particles, this theorem can be used to establish conservation of
the total energy of a rigid body during a motion.

2.1 Koenig’s Decomposition

By definition, the kinetic energy T of a rigid body is

T =
1

2

∫
R

v · vρdv. (38)

where

v = vC + ω × π,

π = r− rC ,

ω = ωxex + ωyey + ωzez.

(39)

Substituting

T =
1

2

∫
B
(vC · vC + 2vC · (ω × π) + (ω × π) · (ω × π)) dm (40)

However,

1

2

∫
B
vC · vCdm =

vC · vC

2

∫
dm =

1

2
mvC · vC . (41)∫

B
vC · (ω × π)dm = vC ·

(
ω ×

∫
πdm

)
= 0. (42)
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Thus,

T =
1

2
mvC · vC +

1

2

∫
B
(ω × π) · (ω × π)dm (43)

we can simplify

(ω × π) · (ω × π) = ((π · π)ω − (π · ω) · ω). (44)

Recall that

HC =

∫
B
π × (ω × π)dm =

∫
B
((π · π)ω − (π · ω)π)dm. (45)

Hence, we obtain the Koenig decomposition:

T =
1

2
mvC · vC +

1

2
H · ω. (46)

2.2 The Work-Energy Theorem

Ṫ =
1

2
mv̇C · vC +

1

2
mvC · v̇C +

1

2
Ḣ · ω +

1

2
H · ω̇. (47)

We need to show that Ḣ · ω = H · ω̇.

α = ω̇ =
d

dt
(ωxex + ωyey + ωzez) (48)

= ω̇xex + ω̇yey + ω̇zez + ωxėx + ωyėy + ωzėz (49)

= ω̇xex + ω̇yey + ω̇zez + ω × (ωxex + ωyey + ωzez) (50)

= ω̇xex + ω̇yey + ω̇zez. (51)

Another direct calculation using this expression for α shows that

HC · ω̇ = (Ixxωx + Ixyωy + Ixzωz)ω̇x + (Ixyωx + Iyyωy + Iyzωz)ω̇y + (Ixzωx + Iyzωy + Izzωz)ω̇z.
(52)

Comparing this to the corresponding expression for ḢC · ω, we find that they are equal. Con-
sequently,

Ṫ =
1

2
mv̇C · vC +

1

2
mvC · v̇C +

1

2
Ḣ · ω +

1

2
Ḣ · ω. (53)

This result implies that

Ṫ = mvC · vC + Ḣ · ω. (54)

Invoking the balance of linear momentum and the balance of angular momentum, we obtain
the work-energy theorem:

Ṫ = F · vC +M · ω. (55)

You should notice how this is a natural extension of the work-energy theorem for a single
particle.
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2.3 An alternative form of the work-energy theorem

Recall,

F =
K∑
i=1

Fi (56)

MC = Me +
K∑
i=1

(ri − rC)× Fi (57)

[continue the 9.2.3.]

3 Integral Forms of the Balance Laws
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4 Summary

[Copied From OOR Primer Chapter 9]

For a system of K forces Fi, (i = 1, . . . , K) and a moment Me, that is not due to the moment
of an applied force, acting on the rigid body, the resultant force F and moments are

F =
K∑
i=1

Fi,

MO = Me +
K∑
i=1

ri × Fi,

MC = Me +
K∑
i=1

(ri − rC)× Fi,

(58)

where MO is the resultant moment relative to a fixed point O and M is the resultant moment
relative to the center of mass C of the rigid body.

The relationship between forces and moments and the motion of the rigid body is postulated
using the balance laws. There are two equivalent sets of balance laws:

F = m
dvC

dt
, and MO = ḢO. (59)

and

F = m
dvC

dt
, and MC = ḢC . (60)

When these balance laws are specialized to the case of a fixed-axis rotation, the expressions for
ḢO and ḢC simplify. For instance,

F = mv̇C ,

M = (Ixzω̇ − Iyzω
2)ex + (Iyzω̇ + Ixzω

2)ey + Izzω̇ez.
(61)

In most problems, {Ex,Ey,Ez} are chosen such that Ixz = Iyz = 0.

To establish conservations of energy, two equivalent forms of the work-energy theorem were
developed. First, however, the Koenig decomposition for the kinetic energy of a rigid body was
established:

T =
1

2
mvC · vC +

1

2
H · ω.

This was then followed by a development of the work-energy theorem for a rigid body:

dT

dt
= F · [v]C +M · ω =

K∑
i=1

Fi · vi +Me · ω. (62)

To establish energy conservation results, this theorem is used in a similar manner to the one
employed with particles and systems of particles.

Four sets of applications were the discussed:
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1. Purely translational motion of a rigid body where ω = α = 0.

2. A rigid body with a fixed point O.

3. Rolling rigid bodies and sliding rigid bodies.

4. Imbalanced rotors.

It is important to note that for the second set of applications, the balance law MO = ḢO is
more convenient to use than M = Ḣ. The role of MR in these problems is to ensure that the
axis of rotation remains Ez. Finally, the four steps discussed are used as a guide to solving all
of the applications.
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