* HW4 due today. * HWS due in a week (covers both W-E theorem & Angular Momentum) Previously on Dynamics : • Power = $\underline{P} \cdot \underline{v}$ • Work $\underline{W}_{P,AB} = \int_{t_A}^{t_B} \underline{P} \cdot \underline{v} \, dt = \int_{r_A}^{\underline{B}} \underline{P} \cdot d\underline{r}$ • Kinetic energy $T = \frac{1}{2} m v \cdot v$ • Work-Energy theorem $\dot{T} = \underline{F} \cdot \underline{v}$ $T_{B} - T_{A} = W_{\underline{F},AB} \iff E_{B} - E_{A} = W_{\underline{F}_{nc},AB}$. some forces are conservative F_{c} , Their work is $\underline{W}_{F_{c},AB} = U_{A} - U_{B}$ - constant force <u>C</u> (eg. weight) $V_{\underline{c}} = -\underline{C} \cdot \underline{r}$ - spring force $\underline{f_s} = -k\epsilon \frac{\underline{r} - \underline{k}}{\|\underline{r} - \underline{r}A\|}$ $U_s = \frac{1}{2} K \varepsilon^2$ - gravitational force (see set 8) To day on Dynamics: Linear Nomentum, Angular Momentum & Their conservations. linear momentum $\underline{G} = M v$ Bolm $f = \underline{G}$ (if the mass is constant) $g = \frac{dv}{dt}$ \underline{a} is not defined at instances when \underline{v} is not differentiable. $\int_{a}^{t_{B}} E dt = G_{B} - G_{A} = M \underline{v}_{B} - M \underline{v}_{A} \implies \text{more general}.$

Uniear impulse of a force. Unear impulse - linear momentum equation Time integral of the BOM.

Conservation of Linear Momentum

Guanhity is not changing in three

$$\underline{G}$$
 is observed \Rightarrow $\underline{G} = 0 \Rightarrow \underline{F} = \underline{0}$
 $\underline{G}_{A} = \underline{G}_{B}$

sometimes <u>G</u> is not concerved (completely), but <u>G</u> might be conserved in a certain direction <u>c</u>.

tor a particle, BOAN is derived from BolM. This is not the case for systems of particles or nigid bodies, for which the BOAN is a <u>law</u> portulated by Evler known to Eulers II ha law. $M^{2} = \Gamma \times E$ is the SUM of moments acting on a system.

To calculate the moment of a force about a certain point, you crow the partition from that point to a point on the live of action of a force with the force, ί<u>ω</u> g. $\underline{\mathbf{M}}^{\circ} = \underline{\mathbf{\Gamma}} \times \underline{\mathbf{W}} = (\mathbf{x} \underline{\mathbf{t}} \mathbf{x} + \mathbf{y} \underline{\mathbf{t}} \mathbf{y}) \times (-\underline{\mathbf{mg}} \underline{\mathbf{t}} \mathbf{y}) = -\underline{\mathbf{mg}} \mathbf{x} \underline{\mathbf{t}} \mathbf{z}.$ Conservation of Angular Momentum $\underline{M}^{\circ} = \underline{\underline{r}} \times \underline{\underline{F}} = \underline{\underline{H}}^{\circ} + \underline{\underline{t}}_{\underline{R}}$ integral form of BOAM $\int M^{\circ} dt = H^{\circ}_{B} - H^{\circ}_{A}$ In what case is <u>H</u> conserved? H° converted \rightarrow $\dot{H}^{\circ} = 0 \rightarrow M^{\circ}$. In analogy to our previous developments, H° might not be completely conserved, but it might be conserved in a certain direction. H. C = CONT $\frac{d}{d}(\underline{H},\underline{c}) = \underline{Q} = \underline{H}, \underline{c} + \underline{H}, \underline{c} = \underline{H}, \underline{c} + \underline{H}, \underline{c} = 0$ if c=constg then He=const => M° == 6 if $\dot{x} = 0$, if $\dot{z} = c$ if \dot{H} is const => from \dot{H} is notconserved. z = c z = ct if \dot{H} is const => from \dot{H} is notconserved.

The energy of a system is conserved if the only force doing work on the system are unservative.

$$T_B - T_A = W_{f_G AS} = U_A - U_B$$

$$T_B + U_S = T_A + U_A = E$$

3/185 A particle of mass m moves with negligible friction on a horizontal surface and is connected to a light spring fastened at O. At position A the particle has the velocity $v_A = 4$ m/s. Determine the velocity v_B of the particle as it passes position B.

energy of the system is convened.