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1 The Center of Mass

The center of mass C of a body B has position vector

rC =

∫
B rdm∫
B dm

, (1)

with dm = ρ(x, t)dv where ρ is the mass density for unit volume and dv.

A special feature for rigid bodies is that the center of mass behaves as if it were a material
point.

vC − vA = ω × (rC − rA) ,

aC − aA = α× (rC − rA) + ω × (ω × (rC − rA)) .

Example: Find the center of mass of any body from Set 15.

2 Linear Momentum

By definition, the linear momentum of a body G is the sum of the linear momenta of its
constituents

G =

∫
B

vdm.

Equivalently,

G =

∫
B
vdm =

∫
B

dr

dt
dm =

d

dt

(∫
B
rdm

)
=

d

dt
(mrC) = mvC .

3 Kinematics of Rolling and Sliding

Consider a rigid body B that is in contact with a fixed surface S. As the body moves on the
fixed surface, the material point of the body that is is contact with the surface may change. We
denote the material point of the body that is in contact at time t by P with position vector rP
and velocity vP and the unit normal to S by n.
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Since P is a material point of B, we can write

vP − vC = ω × (rP − rC) ,

aP − aC = α× (rP − rC) + ω × (ω × (rP − rC)) .

For a rigid body that is sliding on the fixed surface S, the component of vP in the n direction
is zero:

vP · n = 0.

Thus,

vC = −ω × (rP − rC) · n.

For a rigid body that is rolling on the fixed surface S, the velocity of the instantaneous point
of contact P is zero:

vP = 0.

Hence,

vC = −ω × (rP − rC).

Note that the acceleration aP is not necessarily 0.

4 Kinematics of a Rolling Circular Disk
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Consider an upright homogeneous disk of radius R that is rolling on a plane. We define a
corotational basis for the disk

ex = cos(θ)Ex + sin(θ)Ey,

ey = cos(θ)Ey − sin(θ)Ey,

ez = Ez.

Because the motion is a fixed axis rotation,
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5 Angular Momenta

The angular momentum of a system relative to any point P is

HP =

∫
B

(r− rP )× vdm.

For P being the center of mass C and the fixed origin O, receptively we have

HC =

∫
B

(r− rC)× vdm,

HO =

∫
B

r× vdm, .

HP and HC are related through

HP = HC + (rC − rP )×G.

for the special case that P is the origin O, we get

HO = HC + rC ×G.

In other words, the angular momentum of a rigid body relative to a fixed point O is the sum of
the angular momentum of the rigid body about its center of mass and the angular momentum
of its center of mass relative to O.

5.1 Inertia Tensors

Recall, for any material points on a body, its velocity v is

v − vC = ω × (r− rC).

Also, define

π = r− rC = xex + yey + zez.

Then,

HC =

∫
B

(r− rC)× vdm,

=

∫
B

(r− rC)× (vC + ω × (r− rC))dm

=

∫
B

π × (vC + ω × π)dm,

=

∫
B

π × vdm+

∫
B

π × (ω × π)dm

The first integral is zero, and from the BAC-CAB identity, the second integral can be written
as

HC =

∫
B

((π · π)ω − (π · ω)π)dm
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Substituting

r− rC = xex + yey + zez,

ω = ωxex + ωyey + ωzez,

we get

H = (ICxxωx + ICxyωy + ICxzωz)ex + (ICxyωx + ICyyωy + ICyzωz)ey + (ICxzωx + ICyzωy + ICzzωz)ez.

where

ICxx =

∫
B

(y2 + z2)dm,

ICxy = −
∫
B

xydm

In matrix form, HC · ex
HC · ey
HC · ez

 =

ICxx ICxy ICxz
ICxy ICyy ICyz
Ixz Iyz Izz

ω · ex
ω · ey
ω · ez


The matrix in this equation is known as the inertia matrix. Its diagonal components are terms
the moments of inertia and its nondiagonal components are termed the products of inertia.

When the corotational basis {ex, ey, ez} is an eigenbasis of the inertia matrix, then the products
of inertia are zero.

Example: Watch video: Professor Walter Lewin example with rolling cylinders

Example: Tight rope walker A tight rope walker holds a pole to increase his or her moment of
inertia against rotating off of rope. This gives the tight rope walker more time to react.

5.1.1 Example: Solid Cylinder

Ez
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C
ℓ

R
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Noting that dm = ρdV = ρrdrdθdz, we have

ICzz =

∫
B
(x2 + y2)dm

=

∫
B
r2dm

= ρ

∫ ℓ
2

− ℓ
2

∫ 2π

0

∫ R

0

r3drdθdz

= ρ2πℓ

∫ R

0

r3dr

=
1

2
ρπℓR4

(2)

Since V = πR2ℓ and m = ρπℓR4, we can simplify this expression to ICxx = mR2

2
.

5.1.2 Example: Cylindrical Hoop

ICzz =

∫
B
r2dm = R2

∫
B
dm = mR2 (3)

since every dm has r = R.

5.2 The parallel axis theorem

Lets say we already have the ICxx, I
C
xy, I

C
xz, etc about the center of mass C. Now I want IAxx, I

A
xy, I

Axz, etc
about a fixed point A on the rigid body where the axes are parallel.

r− rC

rA − rC

r− rA

A

C

Recall that

Ixx =

∫
B
(x2 + y2)dm,

Ixy =

∫
B
(xy)dm,

r− rC = xex + yey + zez,
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and let

rA − rC = Axex + Azey + Azez.

Then,

IAxx =

∫
B
[(y − yA)

2 + (z − Az)
2]dm,

= ICxx + (A2
y + A2

z)

∫
B
dm− 2Ay

∫
B
ydm− 2Az

∫
B
zdm.

Because the integral of
∫
B πdm = 0, then

∫
B ydm = 0 and

∫
B zdm = 0 and

IAxx = ICxx +m(A2
y + A2

z).

The moment of inertia always increases when we move away from the center of mass.

IAxy = −
∫
B
(x− Ax)(y − Ay)dm = Ixy −mAxAy.

6 Radius of Gyration

The radius of gyration about the z-axis kz is a quantity such that

mk2
z = Izz.

kx and ky are similarly defined.
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