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1 Linear Momentum and Its Conservation

Recall that the linear momentum G of the particle is defined to be

G = mv = mṙ.

1.1 Linear Impulse and Linear Momentum

A more primitive form of the balance of linear momentum F = ma is the integral form

G(t1)−G(t0) =

∫ t1

t0

Fdt.

• The time integral of a force is known as its linear impulse.

• This form is more general than F = ma because it does not assume that v can be always
differentiated to determine a.

1.2 Conservation of Linear Momentum

Suppose that the component of G in the direction of a given vector c is conserved:

d

dt
(G · c) = 0.

This means that

Ġ · c+G · ċ = F · c+G · ċ = 0.

Thus, given a vector c,

G · c is conserved if, and only if, F · c+G · ċ = 0.

If c is a constant vector, G ·c is conserved if, and only if, F ·c = 0. From the BoLM, this means
that there is no force in this constant direction.

1.3 Examples

Consider a projectile motion in the {Ex,Ey} plane with W = −mgEy. The linear momentum of
the projectile would be conserved in both the Ex and Ey directions, but not in the Ey direction.
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2 Angular Momentum and Its Conservation

[ADD FIGURE] Let r be the position vector of a particle relative to a fixed point O, and let
v be the absolute velocity vector of the particle. Then, the angular velocity momentum of the
particle relative to O is denoted by HO and defined as

HO = r×mv = r×G.

In Cartesian coordinates,

HO = . . . = m (yż − zẏ)Ex +m (zẋ− xż)Ey +m (xẏ − yẋ) .

In cylindrical-polar coordinates,

HO = . . . = −mzrθ̇er +m (zṙ − rż)Ey +m (xẏ − yẋ) .

2.1 Angular Momentum Theorem

Using the BoLM, we can calculate

ḢO =
d

dt
(r×mv) = v ×mv + r×mv̇ = r× F.

Thus, we obtain the angular momentum theorem

ḢO = r× F.

2.2 Conservation of Angular Momentum

Suppose that the component of HO in the direction of a given vector c is conserved

d

dt
(HO · c) = 0.

Then,

d

dt
(HO · c) = ḢO · c+HO · ċ = (r× F) · c+HO · ċ.

Consequently, for a given vector c,

HO · c is conserved if, and only if, (r× F) · c+HO · ċ = 0.

If c is a constant vector, then HO · c is conserved if, and only if, (r× F) · c = ḢO · c = 0.

2.2.1 Central Force Problems

A central force problem is one where F is parallel to r. The angular momentum theorem in this
case implies that ḢO = r× F = 0.

Then, we can write

HO = hh = constant = r×mv

where h and h are constant.

The vectors r and v form a plane with a constant unit normal vector h. This plane passes
through the origin O and is fixed. Given a set of initial conditions r(t0) and v(t0), we can
choose a cylindrical polar coordinate system such that Ez = h, r = rer, and v = ṙer + rθ̇eθ.
To do this, it suffices to choose Ez so that

HO = hEz = r(t0)×mv(t0).
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2.3 Kepler’s Problem

The most famous example of a central force problem, and angular momentum conservation, was
solved by Newton.

Consider the orbit of the Earth about the sun. Recall that the resultant force F exerted on a
planet of mass m by a fixed planet of mass M is conservative:

F = −GmM

||r||2
r

||r||
= −∂U

∂r

U = −GmM

||r||
.

Show that the BoLM yields

mr̈ −mrθ̇2 = −GMm

r2
,

mrθ̈ + 2mṙθ̇ = 0.

This problem has two conserved quantities.

E =
1

2
mv · v + U =

1

2

(
ṙ2 + r2θ̇2

)
− GMm

r

h = HO · Ez = mr2θ̇

Watch this video on Kepler’s laws.

2.4 Particle on a Smooth Cone

Show that HO · Ez is conserved.
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https://www.youtube.com/watch?v=pdst6HQkdrc
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