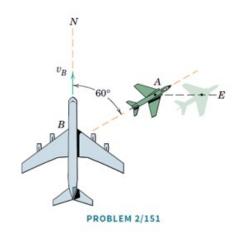
MECH230 - Fall 2024 Recommended Problems - Set 06

Theresa Honein

September 11, 2024

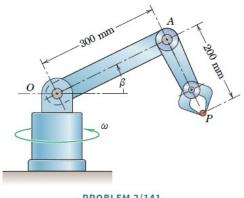
Relative motions of translating rigid bodies. The position of a body B with respect to a body A is written as $\mathbf{r}_{B/A} = \mathbf{r}_B - \mathbf{r}_A$. Taking derivatives of this equation, we get $\mathbf{v}_{B/A} = \mathbf{v}_B - \mathbf{v}_A$ and $\mathbf{a}_{B/A} = \mathbf{a}_B - \mathbf{a}_A$.

<u>Corotational vector</u> A corotational vector is a vector fixed to a rigid body and rotates with it.

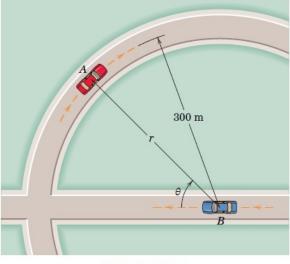

The spring force A spring of stiffness K with unstretched length ℓ_0 whose base is at point A and whose free end is attached to a mass m with position vector \mathbf{r} applies a force on m that is

$$\mathbf{F}_s = -K(||\mathbf{r} - \mathbf{r}_A|| - \ell_0) \frac{\mathbf{r} - \mathbf{r}_A}{||\mathbf{r} - \mathbf{r}_A||}.$$
(1)

These problems are taken from J. L. Meriam, L. G. Kraige, and J. N. Bolton (MKB), Engineering Mechanics: Dynamics, Ninth Edition, Wiley, New York, 2018.

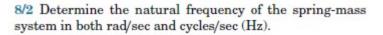

1. [MKB 2/051]

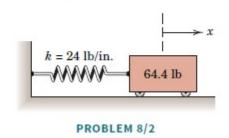
2/151 The jet transport *B* is flying north with a velocity $v_B = 600$ km/h when a smaller aircraft *A* passes underneath the transport headed in the 60° direction shown. To passengers in *B*, however, *A* appears to be flying sideways and moving east. Determine the actual velocity of *A* and the velocity which *A* appears to have relative to *B*.


2. [MKB 02-141] Draw the position vector from O to P and cylindrical polar coordinate system at point P. As the base of the robot rotates, \mathbf{E}_z remains fixes, but the basis vectors $\{\mathbf{e}_r, \mathbf{e}_\theta\}$ rotate with $\dot{\theta} = \omega = const$. Define a unit vector \mathbf{e}_1 pointing from O to A and a unit vector \mathbf{e}_2 perpendicular to it pointing from P to A. Express the $\{\mathbf{e}_1, \mathbf{e}_2\}$ vectors in terms of $\{\mathbf{e}_r, \mathbf{E}_z\}$ and the angle β . You can then write the position vector of P as $\mathbf{r}_P = 0.3\mathbf{e}_1 - 0.2\mathbf{e}_2$ and differentiate this expression to get the velocity and acceleration of P.

2/141 An industrial robot is being used to position a small part *P*. Calculate the magnitude of the acceleration a of *P* for the instant when $\beta = 30^{\circ}$ if $\dot{\beta} = 10$ deg/s and $\ddot{\beta} = 20$ deg/s² at this same instant. The base of the robot is revolving at the constant rate $\omega = 40$ deg/s. During the motion arms *AO* and *AP* remain perpendicular.

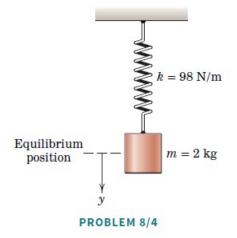
3. [MKB 02-166] Draw your Cartesian and polar bases carefully! Remember that for the setup we introduced in class, the angle θ is the angle between \mathbf{E}_x and \mathbf{e}_r .

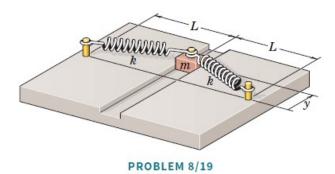

2/166 Car *A* is traveling at the constant speed of 60 km/h as it rounds the circular curve of 300-m radius and at the instant represented is at the position $\theta = 45^{\circ}$. Car *B* is traveling at the constant speed of 80 km/h and passes the center of the circle at this same instant. Car *A* is located with respect to car *B* by polar coordinates *r* and θ with the pole moving with *B*. For this instant determine $v_{A/B}$ and the values of \dot{r} and $\dot{\theta}$ as measured by an observer in car *B*.



PROBLEM 2/166

In the following problems from chapter 8, find the equation of motion of the block in each case. Neglect what the original MKB question is asking.


4. [08-002]


5. [08-004]

8/4 For the spring-mass system shown, determine the static deflection $\delta_{\rm st}$, the system period τ , and the maximum velocity $v_{\rm max}$ which result if the cylinder is displaced 100 mm downward from its equilibrium position and released from rest.

6. [08-019]

▶8/19 The slider of mass *m* is confined to the horizontal slot shown. The two springs each of constant *k* are linear. Derive the nonlinear equation of motion for small values of *y*, retaining terms of order y^3 and larger. Both springs are unstretched when y = 0. Neglect friction.

